59 research outputs found

    Genome analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea

    Get PDF
    Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38–39 Mb genomes include 11,860–14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared t

    Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea

    Get PDF
    Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38–39 Mb genomes include 11,860–14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea–specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops.Fil: Ten Have, Arjen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Biológicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Amselem, Joelle. Institut National de la Recherche Agronomique; FranciaFil: Cuomo, Christina A.. Broad Institute of MIT and Harvard; Estados UnidosFil: Jan, A. L. van Kan. Wageningen University; Países BajosFil: Viaud, Muriel. Institut National de la Recherche Agronomique; FranciaFil: Benito, Ernesto P.. Universidad de Salamanca; EspañaFil: Couloux, Arnaud. Centre National de Séquençage. Genoscope; FranciaFil: Coutinho, Pedro M.. Centre National de la Recherche Scientifique; FranciaFil: Vries, Ronald P. de. Microbiology and Kluyver Centre for Genomics of Industrial Fermentations; Países Bajos. Fungal Biodiversity Centre; Países BajosFil: Dyer, Paul S.. The University Of Nottingham; Reino UnidoFil: Fillinger, Sabine. Institut National de la Recherche Agronomique; FranciaFil: Fournier, Elisabeth. Institut National de la Recherche Agronomique; Francia. Centre de coopération internationale en recherche agronomique pour le développement; FranciaFil: Gout, Lilian. Institut National de la Recherche Agronomique; FranciaFil: Hahn, Matthias. University Of Kaiserlautern; AlemaniaFil: Kohn, Linda. University Of Toronto; CanadáFil: Lapalu, Nicolas. Institut National de la Recherche Agronomique; FranciaFil: Plummer, Kim M.. la Trobe University; AustraliaFil: Pradier, Jean-Marc. Institut National de la Recherche Agronomique; FranciaFil: Quévillon, Emmanuel. Institut National de la Recherche Agronomique; Francia. Centre National de la Recherche Scientifique; FranciaFil: Sharon, Amir. Tel Aviv University. Department of Molecular Biology and Ecology of Plants; IsraelFil: Simon, Adeline. Institut National de la Recherche Agronomique; FranciaFil: Tudzynski, Bettina. Institut für Biologie und Biotechnologie der Pflanzen; AlemaniaFil: Tudzynski, Paul. Institut für Biologie und Biotechnologie der Pflanzen; AlemaniaFil: Wincker, Patrick. Centre National de Séquençage. Genoscope; FranciaFil: Andrew, Marion. University Of Toronto; CanadáFil: Anthouard, Véronique. Centre National de Séquençage. Genoscope; FranciaFil: Beever, Ross E.. Landcare Research; Nueva ZelandaFil: Beffa, Rolland. Centre National de la Recherche Scientifique; FranciaFil: Benoit, Isabelle . Microbiology and Kluyver Centre for Genomics of Industrial Fermentations; Países BajosFil: Bouzid, Ourdia. Microbiology and Kluyver Centre for Genomics of Industrial Fermentations; Países Bajo

    Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis

    Get PDF
    LetterInternational audienceThe Périgord black truffle (Tuber melanosporumTuber\ melanosporum Vittad.) and the Piedmont white truffle dominate today's truffle market. The hypogeous fruiting body of T. melanosporumT.\ melanosporum is a gastronomic delicacy produced by an ectomycorrhizal symbiont endemic to calcareous soils in southern Europe. The worldwide demand for this truffle has fuelled intense efforts at cultivation. Identification of processes that condition and trigger fruit body and symbiosis formation, ultimately leading to efficient crop production, will be facilitated by a thorough analysis of truffle genomic traits. In the ectomycorrhizal Laccaria bicolorLaccaria\ bicolor, the expansion of gene families may have acted as a 'symbiosis toolbox'. This feature may however reflect evolution of this particular taxon and not a general trait shared by all ectomycorrhizal species. To get a better understanding of the biology and evolution of the ectomycorrhizal symbiosis, we report here the sequence of the haploid genome of T. melanosporumT.\ melanosporum, which at ∼\sim125 megabases is the largest and most complex fungal genome sequenced so far. This expansion results from a proliferation of transposable elements accounting for ∼\sim58% of the genome. In contrast, this genome only contains ∼\sim7,500 protein-coding genes with very rare multigene families. It lacks large sets of carbohydrate cleaving enzymes, but a few of them involved in degradation of plant cell walls are induced in symbiotic tissues. The latter feature and the upregulation of genes encoding for lipases and multicopper oxidases suggest that T. melanosporumT.\ melanosporum degrades its host cell walls during colonization. Symbiosis induces an increased expression of carbohydrate and amino acid transporters in both L. bicolorL.\ bicolor and T. melanosporumT.\ melanosporum, but the comparison of genomic traits in the two ectomycorrhizal fungi showed that genetic predispositions for symbiosis −-'the symbiosis toolbox'−- evolved along different ways in ascomycetes and basidiomycete

    Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea

    Get PDF
    Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38–39 Mb genomes include 11,860–14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea–specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops

    Molecular basis for novel root phenotypes induced by <em>Agrobacterium rhizogenes</em> A4 on cucumber

    No full text
    International audienceWe have used the wild-type Agrobacterium rhizogenes strain A4 to induce roots on cucumber stem explants. Cultures of transformed roots obtained that were capable of hormone-autonomous growth could be grouped in three phenotypic classes. Of particular interest were extremely thick roots of a type not previously described. Characterization of the transferred DNA and of the expression of the corresponding genes allowed us to determine that the genes rolABC of the TL region of the Ri plasmid are sufficient to induce thin roots similar to those observed in other species, while the aux genes of the TR region are sufficient to induce thick roots. Among clones bearing the aux genes, there was a correlation between level of expression of aux2 and root phenotype
    • …
    corecore